FANDOM


This is a page just for spammer. You can spam as much as you Want. Just edit the page and SPAM

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ─=≡Σ((( つ•̀ω•́)つ

If an object has a final velocity of 8m/s and experienced an acceleration of 2m/s2 over 3 seconds what was its initial velocity? 

Acceleration= final velocity-initial velocity/ time it takes

2m/s2= 8m/s - X/3 seconds

=2m/s2


If the object in QI had a mass of 500g, what is the force required to achieve the motion described in question 1? 

Newton=kg x m/s2 

Newton= 0.5 x 2m/s2 

= 1kgms2 

= 1 Newton


A billiard ball with a mass of 50g is hit with a force of 10N, what will the acceleration be? 

Newton=g x m/s2 

10= 0.05 X Y

200m/s2 



If this ball hits another billiard ball with a mass of 40g and fully transfers its force to the smaller ball, will the smaller ball move away with greater velocity than the ball that hit it was travelling at the point of impact, justify your answer


Yes

Newton= g x m/s2 

Newton= 0.05 X 200m/s2

10= 0.04 X m/s2 

=250m/s2 


Scaffold for justification of answer


Billiard ball 1 a=200m/s2 

Billiard ball 2 a=200m/s2 

What is acceleration? (Change in velocity) 

Since BB2 was stationary, being greater than A could only come from a higher final velocity



The force of 10N acting on the first ball is fully transferred to the 2nd billiard ball. This means that the first billiard ball will undergo a deceleration of 200m/s2 and the 2nd billiard ball and the second ball undergoes as acceleration of 250m/s2. For the second billiard ball to experience a greater acceleration than the first, it's final velocity must be greater than the initial velocity of the first ball.

If an object has a final velocity of 8m/s and experienced an acceleration of 2m/s2 over 3 seconds what was its initial velocity? 

Acceleration= final velocity-initial velocity/ time it takes

2m/s2= 8m/s - X/3 seconds

=2m/s2


If the object in QI had a mass of 500g, what is the force required to achieve the motion described in question 1? 

Newton=kg x m/s2 

Newton= 0.5 x 2m/s2 

= 1kgms2 

= 1 Newton


A billiard ball with a mass of 50g is hit with a force of 10N, what will the acceleration be? 

Newton=g x m/s2 

10= 0.05 X Y

200m/s2 



If this ball hits another billiard ball with a mass of 40g and fully transfers its force to the smaller ball, will the smaller ball move away with greater velocity than the ball that hit it was travelling at the point of impact, justify your answer


Yes

Newton= g x m/s2 

Newton= 0.05 X 200m/s2

10= 0.04 X m/s2 

=250m/s2 


Scaffold for justification of answer


Billiard ball 1 a=200m/s2 

Billiard ball 2 a=200m/s2 

What is acceleration? (Change in velocity) 

Since BB2 was stationary, being greater than A could only come from a higher final velocity



The force of 10N acting on the first ball is fully transferred to the 2nd billiard ball. This means that the first billiard ball will undergo a deceleration of 200m/s2 and the 2nd billiard ball and the second ball undergoes as acceleration of 250m/s2. For the second billiard ball to experience a greater acceleration than the first, it's final velocity must be greater than the initial velocity of the first ball.

If an object has a final velocity of 8m/s and experienced an acceleration of 2m/s2 over 3 seconds what was its initial velocity? 

Acceleration= final velocity-initial velocity/ time it takes

2m/s2= 8m/s - X/3 seconds

=2m/s2


If the object in QI had a mass of 500g, what is the force required to achieve the motion described in question 1? 

Newton=kg x m/s2 

Newton= 0.5 x 2m/s2 

= 1kgms2 

= 1 Newton


A billiard ball with a mass of 50g is hit with a force of 10N, what will the acceleration be? 

Newton=g x m/s2 

10= 0.05 X Y

200m/s2 



If this ball hits another billiard ball with a mass of 40g and fully transfers its force to the smaller ball, will the smaller ball move away with greater velocity than the ball that hit it was travelling at the point of impact, justify your answer


Yes

Newton= g x m/s2 

Newton= 0.05 X 200m/s2

10= 0.04 X m/s2 

=250m/s2 


Scaffold for justification of answer


Billiard ball 1 a=200m/s2 

Billiard ball 2 a=200m/s2 

What is acceleration? (Change in velocity) 

Since BB2 was stationary, being greater than A could only come from a higher final velocity



The force of 10N acting on the first ball is fully transferred to the 2nd billiard ball. This means that the first billiard ball will undergo a deceleration of 200m/s2 and the 2nd billiard ball and the second ball undergoes as acceleration of 250m/s2. For the second billiard ball to experience a greater acceleration than the first, it's final velocity must be greater than the initial velocity of the first ball.

If an object has a final velocity of 8m/s and experienced an acceleration of 2m/s2 over 3 seconds what was its initial velocity? 

Acceleration= final velocity-initial velocity/ time it takes

2m/s2= 8m/s - X/3 seconds

=2m/s2


If the object in QI had a mass of 500g, what is the force required to achieve the motion described in question 1? 

Newton=kg x m/s2 

Newton= 0.5 x 2m/s2 

= 1kgms2 

= 1 Newton


A billiard ball with a mass of 50g is hit with a force of 10N, what will the acceleration be? 

Newton=g x m/s2 

10= 0.05 X Y

200m/s2 



If this ball hits another billiard ball with a mass of 40g and fully transfers its force to the smaller ball, will the smaller ball move away with greater velocity than the ball that hit it was travelling at the point of impact, justify your answer


Yes

Newton= g x m/s2 

Newton= 0.05 X 200m/s2

10= 0.04 X m/s2 

=250m/s2 


Scaffold for justification of answer


Billiard ball 1 a=200m/s2 

Billiard ball 2 a=200m/s2 

What is acceleration? (Change in velocity) 

Since BB2 was stationary, being greater than A could only come from a higher final velocity



The force of 10N acting on the first ball is fully transferred to the 2nd billiard ball. This means that the first billiard ball will undergo a deceleration of 200m/s2 and the 2nd billiard ball and the second ball undergoes as acceleration of 250m/s2. For the second billiard ball to experience a greater acceleration than the first, it's final velocity must be greater than the initial velocity of the first ball.

If an object has a final velocity of 8m/s and experienced an acceleration of 2m/s2 over 3 seconds what was its initial velocity? 

Acceleration= final velocity-initial velocity/ time it takes

2m/s2= 8m/s - X/3 seconds

=2m/s2


If the object in QI had a mass of 500g, what is the force required to achieve the motion described in question 1? 

Newton=kg x m/s2 

Newton= 0.5 x 2m/s2 

= 1kgms2 

= 1 Newton


A billiard ball with a mass of 50g is hit with a force of 10N, what will the acceleration be? 

Newton=g x m/s2 

10= 0.05 X Y

200m/s2 



If this ball hits another billiard ball with a mass of 40g and fully transfers its force to the smaller ball, will the smaller ball move away with greater velocity than the ball that hit it was travelling at the point of impact, justify your answer


Yes

Newton= g x m/s2 

Newton= 0.05 X 200m/s2

10= 0.04 X m/s2 

=250m/s2 


Scaffold for justification of answer


Billiard ball 1 a=200m/s2 

Billiard ball 2 a=200m/s2 

What is acceleration? (Change in velocity) 

Since BB2 was stationary, being greater than A could only come from a higher final velocity



The force of 10N acting on the first ball is fully transferred to the 2nd billiard ball. This means that the first billiard ball will undergo a deceleration of 200m/s2 and the 2nd billiard ball and the second ball undergoes as acceleration of 250m/s2. For the second billiard ball to experience a greater acceleration than the first, it's final velocity must be greater than the initial velocity of the first ball.

If an object has a final velocity of 8m/s and experienced an acceleration of 2m/s2 over 3 seconds what was its initial velocity? 

Acceleration= final velocity-initial velocity/ time it takes

2m/s2= 8m/s - X/3 seconds

=2m/s2


If the object in QI had a mass of 500g, what is the force required to achieve the motion described in question 1? 

Newton=kg x m/s2 

Newton= 0.5 x 2m/s2 

= 1kgms2 

= 1 Newton


A billiard ball with a mass of 50g is hit with a force of 10N, what will the acceleration be? 

Newton=g x m/s2 

10= 0.05 X Y

200m/s2 



If this ball hits another billiard ball with a mass of 40g and fully transfers its force to the smaller ball, will the smaller ball move away with greater velocity than the ball that hit it was travelling at the point of impact, justify your answer


Yes

Newton= g x m/s2 

Newton= 0.05 X 200m/s2

10= 0.04 X m/s2 

=250m/s2 


Scaffold for justification of answer


Billiard ball 1 a=200m/s2 

Billiard ball 2 a=200m/s2 

What is acceleration? (Change in velocity) 

Since BB2 was stationary, being greater than A could only come from a higher final velocity



The force of 10N acting on the first ball is fully transferred to the 2nd billiard ball. This means that the first billiard ball will undergo a deceleration of 200m/s2 and the 2nd billiard ball and the second ball undergoes as acceleration of 250m/s2. For the second billiard ball to experience a greater acceleration than the first, it's final velocity must be greater than the initial velocity of the first ball.

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.